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Abstract
Standard analytical solutions to elliptic boundary value problems on
asymmetric domains are rarely, if ever, obtainable. In this paper, we propose a
solution technique wherein we embed the original domain into one with simple
boundaries where the classical eigenfunction solution approach can be used.
The solution in the larger domain, when restricted to the original domain, is
then the solution of the original boundary value problem. We call this the
extended-domain–eigenfunction method. To illustrate the method’s strength
and scope, we apply it to Laplace’s equation on an annular-like domain.

PACS numbers: 02.60.Jr, 02.60.Cb, 02.30.em
Mathematics Subject Classification: 35J05, 35J15, 35J25, 35J45, 35J55,
65N99

1. Introduction

In many fields of science and technology one is required to solve a boundary value problem
in order to describe, mathematically or physically, the behavior of a system or process. The
classic partial differential equations (PDEs) of mathematical physics, including the scalar
Poisson equation,

�ψ = −ρ, x ∈ �, (1)

the Helmholtz equation,

�ψ + λψ = 0, x ∈ �, (2)
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and the scalar Laplace equation,

�ψ = 0, x ∈ �, (3)

commonly occur in physical and engineering applications [1]. The domain, �, plays an
important role, first, in establishing existence and uniqueness of solutions, and second, that
which concerns us here, in the actual solution calculation process. Existence and uniqueness
are dependent on the boundedness of �, the shape and regularity of its boundary � and also on
the conditions to be satisfied by some combination of the solution ψ and its normal derivative
∂ψ/∂n on � [1–3]. A similar story applies in hydrodynamics where steady laminar flow
behavior of a bounded fluid is governed by the Stokes system of equations:

−�u + ∇p = 0, ∇ · u = 0, x ∈ �, (4)

whose solution (u, p) in R
	 × R satisfies appropriate Dirichlet conditions

u = v0, x ∈ �, (5)

or stress (traction) conditions

pn − (∇u + (∇u)T )n = τ, x ∈ �, (6)

where n is the outward pointing unit normal vector to the boundary �.
The common feature of the partial differential equations (1)–(4) is that they are of elliptic

type [2]. Existence and uniqueness of elliptic PDEs have been addressed in a great variety of
situations [2–5]. Knowing that a unique solution exists is seldom of direct practical use where
interest focuses on the actual calculation of the solution. The present proposal is concerned
with the practical task of explicitly evaluating the unique solutions to equations such as (1)–(4)
in situations of practical relevance. In situations where the domain � has a good geometry (e.g.
it has spherical symmetry), it is often possible to obtain analytic or semi-analytic solutions by,
say, the separation of variables technique. However, in many practical cases, the boundaries
are not of simple geometric shape, thus preventing use of standard solution techniques.

Perturbation methods are useful when the shapes of the boundaries differ only slightly
from regular geometries [6–11]. However, their utility is limited as perturbation expansions
often converge too slowly for very irregular-shaped boundaries.

Currently, if one is to solve any of equations (1)–(4), or linear equations of the same
type, in high-dimensional situations involving domains with boundaries of complicated shape,
then intense numerical techniques such as the finite element method [12, 13], the boundary
element method (BEM) [13–17], the finite difference method [18], the boundary point method
[19–23] or Monte Carlo techniques [18] represent the only alternative. Each of these must be
implemented from the outset giving the scientist or engineer little direct physical insight into
the problem. Also, such techniques are not always straightforward to implement for the non-
numerically trained scientist. And, finally, the solution comes in the form of strictly numerical
data, while the solution itself is not always the final object of study. In fact, determining the
solution of the governing equations often represents the first stage in a chain of calculations
toward a much more involved goal to show how the physical system behaves.

For these practical reasons it is important to consider alternate, semi-analytic approaches
to solving elliptic boundary value problems (EBVPs), and such efforts addressing particular
cases or complicated situations continually appear in the literature (e.g. [24]). In particular,
we make reference to the approaches known as Trefftz methods3 [25–33], named after the
original proposer [25]. Although these methods have some commonality their definition
is quite varied in the literature (see for example [26] wherein Herrera provides a formal

3 We are grateful to an anonymous referee for pointing out in an earlier version of this paper the existence of these
methods and accompanying literature, of which we were unaware.
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definition). Notwithstanding this diversity, the method basically utilizes eigenfunctions of
the differential operator in the construction of a finite sum approximation to the solution
of an EBVP. Usually, the Trefftz method involves the breakup of the given (finite) domain
into subdomains in which solutions, expressed in terms of eigenfunctions, are matched at
the subdomain boundaries [26–30]. In this paper we present a theoretical methodology that
overlaps in philosophy the general Trefftz method. Here, however, the approach is based
on considering the actual domain as a subset of a larger region that possesses much greater
symmetry. The boundary value problem is then extended to the larger domain allowing the
use of eigenfunction expansions to represent the solution. The restriction of this solution to
the original domain is then the solution of the original boundary value problem. Based on
these designated steps the method we adopt will here be referred to as the extended-domain–
eigenfunction method (EDEM) to distinguish it from the standard Trefftz approach. Unknown
to us, a similar idea was suggested in [30], where nevertheless issues of extendibility were not
discussed.

The rest of the paper is organized as follows. In section 2 we provide a formal description
of the problem, at a level of generality so as to allow us to cover all cases of interest. We
also outline the main theoretical questions that need to be answered, establishing the formal
relationship between the original and the extended problems, the importance of the region’s
boundary as well as the significance of the boundary data. These questions seem not to
have been addressed in the presentations of the Trefftz method [26–30] where most attention
has been paid to practical considerations. In sections 3 and 4 we work out in detail all of
the answers for the case of the Laplacian in two dimensions. In section 5 the approach is
demonstrated with the example of the Laplace operator in an annular domain confined to the
plane. Section 6 contains our final remarks.

2. The extended-domain–eigenfunction method

In this section we describe, and provide motivation for, the EDEM as a means of investigating
and solving EBVPs, such as (1)–(4), with annular domains �, defined below. We formally
set out the domain and operator conditions for the original and the extended boundary value
problems. In particular, we describe necessary constraints to be satisfied on the boundary. We
also identify the formal connection between the original and extended domain problems.

2.1. Domain boundary and the extended domain

Let (ξ1, . . . , ξ	) ≡ (ξ ′, ξ	) ∈ R
	 be a suitably chosen orthogonal curvilinear coordinate system

centered at the origin representing a point x ∈ R
	. Consider two open domains � and � with

� ⊂ � ⊂ R
	 on which the partial differential operators introduced below are defined.

Given constants a and A and two positive continuous functions, t1 and t2, defined on the
open domain �′ ⊂ R

	−1, i.e. t1 = t1(ξ
′) and t2 = t2(ξ

′) where ξ ′ ∈ �′, we define � to be the
annular domain

� = {(ξ ′, ξ	)|0 < a < t1(ξ
′) < ξ	 < t2(ξ

′) < A, ξ ′ ∈ �′}.
All domains considered in this paper that are 	-dimensional subsets of R

	 are annular.
With this definition, the annular domain � has an inner boundary �1 given by ξ	 = t1(ξ

′)
and an outer boundary �2 given by ξ	 = t2(ξ

′). For our purposes, we can assume without
loss of generality that �2 coincides with the coordinate surface ξ	 = A. The closure of �

is � = � ∪ �1 ∪ �2. The set {ξ	 = 0} is not in �, but is enclosed by the inner boundary
component.
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Figure 1. Schematic illustrations of some extended domains to which the EDEM can be applied:
(a) a region between an 	-dimensional, closed smooth surface enclosed by an 	-dimensional
sphere, (b) a region bounded by an undulating cylinder and a right cylinder and (c) a lamella
domain bounded by an undulating membrane and a plane surface.

The smoothness of the boundary is determined by the smoothness of the functions t1 and
t2, and the coordinate system ξ . We assume throughout that t1 and t2 are continuous and
piecewise smooth, and that ξ is a smooth change of coordinates.

Consider the examples of annular domains shown schematically in figure 1.
For example, referring to polar coordinates (θ, r) in the plane, � might be the domain

bounded by the ellipse �1: x2 + 4y2 = 1 and the circle �2: r = A = 3. In polar coordinates,
the equation of the ellipse is

r = t1(θ) = 1√
1 + 3 sin2 θ

, θ ∈ �′ = [0, 2π) .

The expression for �2 is r = t2(θ) = 3.
In the second example, we use cylindrical coordinates (z, θ, r). Here, �1 is given

by r = t1(z, θ) = 1 + 1
2 sin θ cos z and �2 is the cylinder r = t2(z, θ) = 5 for

(z, θ) ∈ �′ = R × [0, 2π).
For the final example shown in figure 1, we use standard (x, y) coordinates in the plane.

The boundary �1 is given by y = t1(x) = 1 + 1
3 sin x and �2 is given by y = t2(x) = 3 for

ξ ′ ∈ �′ = R.
As the examples will show, annular domains do not have to be bounded, and can indeed

be simply connected.
We enclose the annular domain, �, in a larger annular domain, �, as follows. Suppose t1

and t2 are the functions that define �. We choose t0 = t0(ξ
′) and t2 as the functions defining

the larger region �. In particular, choose t0 = a defining a second coordinate surface ξ	 = a

such that t0 � t1. We call � an extended domain of �, with boundary components �2 (as in
�) and �0 (given by t0).

Note that by choosing t0 and t2 to be constant, the domain � will have a simple, standard
geometry, a property not possessed by �.

2.2. The operator L

Let L be a linear partial differential operator defined on the annular domain � = {a < ξ	 < A},
written in divergence form as

Lu = L (x, ∂x) u ≡
	∑

i,j=1

∂xi

(
γi,j (x) ∂xj

u
)

+ ϕ (x) u, (7)

where we have used the standard Cartesian coordinate system x = (x1, . . . , xl). We assume
that functions γi,j and ϕ are smooth and continuous up to the boundary, and that L satisfies

4
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the strong ellipticity condition

	∑
i,j=1

γi,j (x)ζiζj � C|ζ |2 ∀x ∈ � and ζ ∈ R
	

for some constant C > 0. The matrix {γi,j } is taken to be symmetric. Our assumptions imply
that any solution to Lu = 0 on � is necessarily smooth (see [34]).

Under the change of coordinates ξ = (ξ ′, ξ	), it is assumed that the equation Lw = 0
may be written as (Lξ ′ + Lξ	

)w = 0, with Lξ ′ independent of ξ	, and Lξ	
independent of ξ ′.

Thus, a separation of variables strategy with w(ξ) = w̃(ξ ′) w(ξ	), leads, at least formally, to

Lξ ′w̃(ξ ′)
w̃(ξ ′)

+
Lξ	

w(ξ	)

w(ξ	)
= 0.

A standard argument leads to the eigenvalue problems

Lξ ′w̃(ξ ′) = −λw̃(ξ ′), Lξ	
w(ξ	) = λw(ξ	). (8)

The separation constant λ is determined from the first of these eigenvalue problems and
homogeneous boundary conditions. For each eigenvalue λ, the second-order equation
Lξ	

w(ξ	) = λw(ξ	) can be solved upon applying some extra condition. A further degree of
freedom is left to determine w; that gap will only be filled after reconstructing the full solution w

from its components, and matching it with some given data. By construction, i.e. it is assumed
that the equation Lξ ′w̃(ξ ′) = −λw̃(ξ ′) together with the boundary conditions imposed by the
context, constitute a self-adjoint problem with a countable number of eigenvalues, with no
finite accumulation point. In this case, solutions to Lw = 0 may be written as

w(ξ) =
∞∑

m=1

am φm(ξ), (9)

where

φm(ξ) = φ̃m(ξ ′) φm(ξ	), (10)

with Lξ ′ φ̃m(ξ ′) = −λmφ̃m(ξ ′), for some λm. The functions φ̃m may be taken to form an
orthonormal basis of L2(ξ ′). Determination of the coefficients am depends on the given
boundary data. We take φm(A) = 0 for all m, for the purpose of solving the problem posed in
section 2.3.

Some of the conditions imposed on the eigenvalues λ could either be changed significantly
or relaxed completely. For a general treatment we would have to resort to abstract spectral
properties of Lξ ′ , but that is not our goal. We want to have as concrete a theory as possible,
while still covering the most important practical examples.

2.3. The problem

We are interested in solving the following boundary value problem in the annular domain �:

problem A0

⎧⎨
⎩

Lv = g, x ∈ �,

v|�1 = η1,

v|�2 = η2,

(11)

with g ∈ C(�) (say), η1 ∈ L2(�1) and η2 ∈ L2(�2). The choice to take our boundary data
in L2(�1) was deliberate. The proof of our main theorem is, however, sufficiently general
for the latter to remain valid in more extensive settings. See remark 3 immediately preceding
theorem 2.
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The standard procedure is to find a particular solution ṽ of the equation Lṽ = g, write
w = v − ṽ, and note that w solves the problem Lw = 0, w|�1 = η̃1, w|�2 = η̃2, for some
η̃1, η̃2. The particular method for obtaining ṽ does not concern us here, and from now on we
will simply take g = 0 in problem A0. For further convenience we will take η2 to be zero as
well, since it does not affect the argument. Problem A0 becomes

problem A

⎧⎨
⎩

Lv = 0, x ∈ �,

v|�1 = η1,

v|�2 = 0.

(12)

Let � be an extended domain for �, with inner boundary �0 given by 0 < a = t0(ξ
′) <

min t1(ξ
′), and consider the problem

problem B

⎧⎨
⎩

Lu = 0, x ∈ �,

u|�0 = η0,

u|�2 = 0,

(13)

with η0 ∈ L2(�0). We will assume here that problem B, like problem A, is well posed.
As outlined in section 2.2, solutions to B have particularly good representations in series

form. To solve problem A given the information on g, �1 and �2, we require a boundary
function η0 defined on �0 such that the solution u of problem B, when restricted to �, is the
solution of problem A. That is, we require a η0 such that

u|� = v, u|�1 = η1. (14)

Essentially, our search involves the characterization of the operators

N : η0 �→ η1 and its inverse K : η1 �→ η0. (15)

This characterization involves a description of their domains and boundedness properties.
While not a limiting consideration, the characterization we follow here is in terms of series
expansions in the space L2(�′).

2.4. Eigenfunction representation; operators N and K

Let V be the space of solutions to problem B, for all η0 ∈ L2(�0). By construction, every
u ∈ V can be expressed as

u (x) =
∞∑

m=1

amφm (ξ) =
∞∑

m=1

amφ̃m(ξ ′) φm(ξ	) x ∈ �, (16)

for some coefficients am to be determined. Here, x is identified by its ξ -coordinate
representation. The boundary condition on �0 gives us

u|�0 = η0(ξ
′) =

∞∑
m=1

amφm(ξ ′, a) ≡
∞∑

m=1

amφm(a) φ̃m(ξ ′), (17)

where we have taken advantage of the coordinate construction specifying �0 to be the
coordinate surface, ξ	 = a.

Equation (17) is a Fourier-like expansion for the boundary function η0 = η0(ξ
′) in terms

of the orthonormal set {̃φm}∞m=1, with coefficients amφm(a). Recalling that �′ ⊂ R
	−1 is the

parameter space we are using to parametrize �0, we write

〈η0, φ̃m〉�′ := amφm(a),

where 〈·, ·〉�′ is an inner product defined over the subset �′ of R
	−1. In theory these values

can be determined by integration once η0 is specified. In practice, however, η0 itself must

6
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be determined. This must be achieved using the remaining information regarding the given
function η1 on the boundary �1 in problem A. This takes the form

u|�1 = η1(ξ
′) =

∞∑
m=1

amφm(ξ ′, t1(ξ ′)) =
∞∑

m=1

〈η0, φ̃m〉�′

φm(a)
φm(ξ ′, t1(ξ ′)). (18)

Based on the Fourier-like interpretation of equation (17), we recognize that equation (18)
defines a mapping N : L2 (�0) → L2 (�1), given explicitly as

(Nη0)(ξ
′) =

∞∑
m=1

〈η0, φ̃m〉�′

φm(a)
φm(ξ ′, t1(ξ ′)) = η1(ξ

′). (19)

The operator K, introduced in (15), would then effectively be identified as K ≡ N−1.
Boundedness for the operator N is a consequence of our assumption that problem B is

well posed and of the maximum principle applied to L (see [34]): if (η0)k � 0 is a sequence
of boundary data converging to 0 in L2(�0), then the corresponding solution uk to problem B
converges to 0 uniformly on compact subsets of �. Since (η1)k is the restriction to �1 of uk,
we conclude that (η1)k too goes to 0 in L2(�1). Hence, N is bounded. The range of N is a
much smaller subspace of L2(�1); for example, as solutions to problem B must be smooth,
then η1 must be at the very least continuous (in fact, its differentiability properties will be
inherited from those of �1 itself).

In general, operator K is discontinuous but, in the functional analysis sense, it is a closed
operator. This can be argued directly from (18) and (19), but we will leave the discussion here
in favor of investigating an explicit problem in the next section.

The fundamental proposal of the EDEM is to effect the inversion of equation (19) and
extract the coefficients of the Fourier-like expansion of η0. Having obtained the expansion
coefficients for η0, the solution of problem A, equation (12), is obtained by restricting the
eigenfunction expression, equation (16), to the domain �. One practical means of inverting
the mapping N is described briefly in section 5 of this paper and in more detail in a follow-up
paper.

3. The extendibility of solutions for the Laplace operator

Various approaches can be followed to analyze the invertibility of the operator N introduced
in section 2.3. The approach we take here is to address explicitly the equivalent question of
extendibility of problem A for the Laplace operator in R

2. The theory for the Laplace operator
in R

n, in particular for n = 2, already contains most of the features of the general case. As
we develop this example, we shall point out differences from the general theory.

By scaling the domain if necessary, our � is bounded on the outside by the unit circle
�2 = {|x| = 1}. We adopt polar coordinates so that ξ1 = ξ ′ = θ and ξ2 = ξ	 = r . The inner
boundary �1 will be represented by the form r = t (θ) < 1, where t is a given continuous,
piecewise differentiable function, viewed either as defined on �1 ⊂ R

2, or on the parameter
space �′ = [0, 2π ], where we identify the endpoints.

Take 0 < a < minθ t (θ). The solution to the Dirichlet problem on �

Problem B

⎧⎨
⎩

�u(x) = 0; 0 < a < |x| < 1;
u(x) = 0; |x| = 1;
u(x) = η0(θ), |x| = a,

(20)

where η0 ∈ L2([0, 2π ]) may be written in polar coordinates as

u(r, θ) =
∞∑

n=−∞
an(r) einθ , (21)

7
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where

a0(r) = η̂0,0

log a
log r;

an(r) = η̂0,n

an − a−n
(rn − r−n), n �= 0,

and η̂0,n are the Fourier coefficients of the boundary data η0:

η0(θ) =
∞∑

n=−∞
η̂0,n einθ . (22)

It is well known [2] that for any η0 ∈ L2([0, 2π ]) there exists a unique function u such
that �u = 0 inside the annulus, u is continuous on a < |x| � 1, u(x) = 0 when |x| = 1, and
such that

lim
r→a+

∫ 2π

0
|u(r, θ) − η0(θ)|2 dθ = 0.

In particular, viewed as a function of θ for each r, the function u(r, ·) converges to η0 in
L2([0, 2π ]), as r approaches a. Expression (21) gives an explicit formula for this solution u.

Now, consider the problem defined on � ⊂ R
2:

Problem A

⎧⎨
⎩

�v(x) = 0; 0 < t(θ) < |x| < 1;
v(x) = 0; |x| = 1;
v(x) = η1(θ), |x| = t (θ),

(23)

where η1 is in L2([0, 2π ]). While problem (23) also has a unique solution [2], closed form
expressions for such a solution are in general not forthcoming.

Definition 1. Let � be the annular domain bounded by |x| = t (θ) and |x| = 1 and � its
extended domain, as above. We define Ea ⊂ L2(�1) to be the range of the operator N given in
(19). In other words, η1 ∈ Ea if and only if there is some η0 ∈ L2([0, 2π ]) such that whenever
u solves (20) with data η0, and v solves (23) with data η1, then u agrees with v over �.

The set Ea contains boundary data for which solutions to (23) are extendable all the way
down to the radius a. Indeed, we will call such an a, η1 extendable, or a-extendable. The main
issue is to identify the conditions that extendable functions need to satisfy. We now prove the
following principal result.

Theorem 1. The boundary data η1 is extendable if and only if we can write

η1(θ) = c0

log a
log t (θ) +

∑
n�=0

cn

an − a−n
(tn(θ) − t−n(θ)) einθ , (24)

where cn ∈ C are such that
∑

n |cn|2 < ∞. In this case the function η0 = Kη1 is such that
η̂0,n = cn for all n.

In other words, η1 is extendable if and only if η1 is in the linear span of the functions

ϕ0(θ) = log t (θ)

log a
; (25)

ϕn(θ) = tn(θ) − t−n(θ)

an − a−n
einθ , n �= 0, n ∈ Z, (26)

with coefficients cn that are square summable.

8
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Again, note that any solution to �u = 0 on a < |x| < 1 must be smooth [4]; this shows
that the data η1 must be restricted somehow.

The proof of theorem 1 will be broken up into two claims. First, we consider the necessary
condition.

Claim 1. If η1 ∈ Ea it can be represented as

η1(θ) =
∞∑

n=−∞
cnϕn(θ),

where
∑

n |cn|2 < ∞, with the series converging uniformly.

Proof. Suppose η1 is extendable. By definition, there is some u given by (21) which, when
restricted to �, provides the solution to (23). This u is necessarily smooth over �, and series
(21) converges uniformly on compact subsets of �. If we evaluate u over the curve r = t (θ),
we obtain (24), with cn = η̂0,n. This proves the claim. �

We consider next sufficiency.

Claim 2. Suppose η1 is given by

η1(θ) =
∞∑

n=−∞
cnϕn(θ),

where
∑

n |cn|2 < ∞. Then

(1) η1 ∈ L2([0, 2π ]) (in fact, η1 is continuous);
(2) problem (23) admits a solution v, continuous on � and v(x) = η1(θ) for x on �1;
(3) there is a function η0 ∈ L2([0, 2π ]) such that the solution u to problem (20) coincides

with v on �.

Proof. Let b be such that 0 < a < b = minθ t (θ) � t (θ) � maxθ t (θ) < 1. We will write t
for t (θ). For n > 0, we have∣∣∣∣ tn − t−n

an − a−n

∣∣∣∣ = t−n

a−n

∣∣∣∣ 1 − t2n

1 − a2n

∣∣∣∣ �
(

a

t

)n ∣∣∣∣ 1

1 − a2n

∣∣∣∣ � 2

(
a

b

)n

;

the last inequality is valid for sufficiently large n. A similar estimate can be constructed for
n < 0. We conclude that the series defining η1 converges uniformly. Moreover, as a uniform
limit of continuous functions, we conclude that η1 is continuous. This proves points 1 and 2.

Now define

η0(θ) =
∞∑

n=−∞
cneinθ .

Given the condition on the coefficients cn, we conclude that η0 ∈ L2([0, 2π ]) and cn = η̂0,n.
Use this η0 as boundary data in (20); then the solution u must be given by (21), with the series
converging uniformly in compact subsets of �. Restricting u to �1, we find that

u(θ, t (θ)) =
∞∑

n=−∞
η̂0,nϕn(θ) = η1(θ).

We conclude that η1 is extendable, finishing the proof. �

9
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Remarks.

(1) We really only need to show point 3, since points 1 and 2 are consequences of point 3.
However, we have shown a little bit extra in points 1 and 2, namely that the terms in the
series for η1 have exponential decay.

(2) Except for points 1 and 2, we have not used any features that are specific to the Laplace
operator in two dimensions. Thus, this proof generalizes to various other settings.

(3) We defined the space Ea([0, 2π ]) by requiring that the extension u has the boundary
value η0 in L2([0, 2π ]). More generally, let s > 0 be a real number and define
Ea,s([0, 2π ]) to be the space of functions, η1, such that η0 is in the Sobolev space
Hs([0, 2π ]). (So, Ea = Ea,0.) If η0, given by (22), is in Hs, then the coefficients cn

must have at most polynomial growth in n. Consequently, expression (21) is a classical
solution of problem B. Thus, the generalized version of theorem 1 remains valid. That is,
η1 ∈ Ea,s([0, 2π ]) if and only if η1 is in the span of ϕn, with coefficients satisfying the
growth conditions for Hs([0, 2π ]). It should also be pointed out that for η0 ∈ Hs([0, 2π ]),
the sense in which η0 is the boundary value of u is that u(r, ·) → η0(·) in the topology of
Hs([0, 2π ]), as r → a. See also remark 3 at the conclusion of section 4.

The following theorem establishes the important fact that not all continuous and
differentiable functions are in Ea for any a.

Theorem 2. Suppose t has m continuous derivatives, where m ∈ {0, 1, . . . ,∞}. Then, there
is a function η1 ∈ Cm(�1) such that for all a with 0 < a < b = minθ t (θ), we have η1 �∈ Ea .

Proof. Suppose m is finite. Define d0 = 0, and for n �= 0,

dn = b|n|

|n|m+2
.

Then,

|dn(t (θ)n − t (θ)−n)| � 1

|n|m+2
.

Since m + 2 � 2, the series

η1(θ) =
∑
n�=0

dn(t (θ)n − t (θ)−n) einθ

converges uniformly. We conclude that η1 is continuous. The first derivative of the series
expression for η1 gives∑

n�=0

dn · n

[(
t ′(θ)

t (θ)

)
(t (θ)n + t (θ)−n) + i

]
einθ .

which converges uniformly and so must equal η′
1(θ). Proceeding inductively, after m

derivatives, we obtain the series∑
n�=0

dn · nm · H(n,m, θ) einθ ,

where H is a function coming from repeated use of the product rule. It can easily (but
laboriously) be verified that b|n|H is bounded, and so this series represents η

(m)
1 (θ), the mth

derivative of η1. Hence, η1 is of class Cm.
Suppose that for this η1 we could extend the solution u to (23) to an annulus of inner radius

a < b; that is, suppose η1 ∈ Ea . Writing cn = dn(a
n −a−n), we see that η1(θ) = ∑

n cnϕn(θ),

10
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and the coefficients cn would have to be square-summable. But since a < b, it can easily be
verified that cn has exponential growth. We conclude that η1 is not in Ea.

If m = ∞, we choose a sequence kn > 0 that decays faster than any polynomial,
but slower than any exponential, meaning that as |n| → ∞ we have knp(n) → 0 for any
polynomial p, but knc

|n| → ∞ for any c > 1. We set dn = b|n|kn, and proceed inductively to
check that η1 has derivatives of all orders. (This is where we need kn decaying faster than any
polynomial.) On the other hand, for the problem to extend to a < b we would need kn(b/a)|n|

to be square-summable, which it is not. �

As implied at the end of section 2.4, Ea is a vector subspace of L2 ([0, 2π ]) but it is not a
closed subspace. Take, for example, the η1 discussed in the preceding proof truncated to the
level N:

η1,N (θ) =
∑

0<|n|�N

b|n|

|n|m+2
(t (θ)n − t (θ)−n) einθ .

Then, η1,N ∈ Ea (since this is a finite sum), and η1,N → η1 in L2 as N → ∞, but η1 itself is
not in Ea. In particular, we see that K = N−1 is an unbounded operator. This indicates that
the problem of finding η0 given η1 is ill-posed. The resolution of this issue is important to the
numerical implementation of the EDEM and will therefore be discussed in a future numerical
publication.

4. Density property of the set Ea

Theorem 1 gives an exact characterization of the extendable functions, while theorem 2 shows
us that even some very well-behaved functions may not be extendable at all (even if �1 is a
circle, there are smooth η1 that are non-extendable).

What is important to establish now is the proposition that Ea is a dense subspace of
L2 = L2 ([0, 2π ]). If so, then any solution to problem (23) with data η1 ∈ L2 can be
approximated by a solution to problem (20), for some η0 ∈ L2. This is the goal of EDEM. If
the assertion were false, then the EDEM would necessarily fail if we chose η1 �∈ Ea , where
Ea is the closure set of Ea in L2.

Under the conditions and notation laid out in the preceding sections for problems (20)
and (23), we establish the following theorem.

Theorem 3.

Ea = L2.

Proof. First assume that η1 is in fact continuous. The idea of the proof is to obtain a harmonic
function, defined on the punctured disk 0 < |x| < 1, which approximates η1 uniformly over
�1. The main claim then follows because the continuous functions are dense in L2.

Our proof uses Runge’s approximation theorem from complex analysis (see [35]). In
order to apply that theorem, we need first to enclose � in a larger domain.

Let λ be a parameter chosen close to 1, say 0 < λ � 1, and consider two auxiliary curves,
�λ and �1/λ, defined by

�λ = λ�1, �1/λ =
{
|x| = 1

λ

}
.

11
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In other words, �λ is a slightly contracted version of �1 and �1/λ is a circle of radius 1/λ > 1.
On �1 we place boundary data η1, which we take to be continuous. We transfer data η1 from
�1 to �λ, as follows:

η1,λ(x) = η1(x/λ), x ∈ �λ.

We define �λ ⊃ � to be the annular domain between �λ and �1/λ and let w be the
(unique) solution to the following harmonic problem in �λ:⎧⎨

⎩
�w(x) = 0, x ∈ �λ;

w(x) = η1,λ(x), x ∈ �λ;
w(x) = 0, x ∈ �1/λ.

Observing that �1 is contained in the open domain �λ, we denote by w� the restriction of w

to �1. We denote by w0 the restriction of w to |x| = 1 (also contained in �λ).
Clearly, by taking the limit λ → 1, w� becomes arbitrarily close to η1 in the supremum

norm (since η1 is continuous). Simultaneously, w0 gets arbitrarily close to 0 in the supremum
norm. More rigorously, given ε > 0 we can choose λ sufficiently close to 1 such that for all θ

we have

|η1(θ) − w(θ, t (θ))| < ε and |w(θ, 1)| < ε. (27)

At this stage, we need the following result.

Lemma 1. There exists a real constant α and a holomorphic function H defined on the annular
domain �λ, such that for all x ∈ �λ we have

w(x) = α log |x| + �H(x).

Here, �H(x) is the real part of H at x. A short proof of this fact can be found in the
appendix. Note that, if |x| = 1, then |�H(x)| = |w(x)| < ε.

By shrinking �λ if necessary (but still containing �1 and |x| = 1), we may assume that H
is bounded on �λ. In the same way we did for w, we denote by H� the restriction of H to the
curve �1 and by H0 the restriction of H to |x| = 1.

Finally, we invoke Runge’s theorem (see [35]). The statement used here is adapted to our
purposes.

Theorem 4 (Runge’s theorem). Given ε > 0, there is a rational function R(x), with poles
only at x = 0 and x = ∞, such that for all x ∈ �1, and all x with |x| = 1, we have

|H(x) − R(x)| < ε.

Runge’s theorem allows us to approximate H on �1 and on |x| = 1, simultaneously, by
a rational function with poles at 0 and ∞. Note that the approximation does not necessarily
extend to the entire domain �λ. With even more reason, the conclusion of the theorem holds
for the real parts of H and R. With q = �R and h = �H we have, for all θ ,

|q(θ, t (θ)) − h(θ, t (θ))| < ε and |q(θ, 1) − h(θ, 1)| < ε. (28)

Note that q = �R is defined on the punctured plane R
2\{0}; in particular it is defined on

0 < |x| � 1. We compute

|q(θ, 1) = q(θ, 1) − h(θ, 1) + h(θ, 1)|
� |q(θ, 1) − h(θ, 1)| + |h(θ, 1)| < ε + ε = 2ε. (29)

Consider now the function s = s(x) defined on |x| � 1, given by �s(x) = 0 when
|x| < 1 and s(θ, 1) = q(θ, 1). Because of the maximum principle we have, for all |x| � 1,
that

|s(x)| � max
θ

|q(θ, 1)| < 2ε.

12
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Finally, consider the function W(x) = α log |x| + q(x) − s(x). This function is defined on the
punctured disk 0 < |x| � 1, and it is harmonic on 0 < |x| < 1. Moreover, W(θ, 1) = 0, from
the definition of s. Writing x = (θ, t (θ)) ∈ �1, we estimate |W(x) − η1(θ)|.

|W(x) − η1(θ) � α log |x| + q(x) − η1(θ)| + |s(x)|
� α log |x| + h(x) − η1(θ)| + |q(x) − h(x)| + 2ε

� w(x) − η1(θ)| + ε + 2ε < 4ε.

We conclude that any continuous η1 is arbitrarily close (in the uniform norm) to a function
in Ea. Therefore, the closure of Ea in L2 contains the continuous functions. Since the continuous
functions form a dense set in L2, we see that L2 ⊂ Ea . This concludes the proof. �

Remarks.

(1) Because we used Runge’s theorem, this proof is only valid in two dimensions. However,
the result is valid for the Laplace operator in higher dimensions. The proof would then
use the results contained in [36] to obtain the existence of an approximating function to
replace our h. Our proof is more direct; in particular it shows a connection between the
method proposed here and classical questions in other fields.

(2) The question of whether the set of functions {φm(ξ ′, t1(ξ ′))} (see (19)) span L2 is, of
course, too difficult to solve in general, and the best we can do is to give sufficient
conditions on φm(ξ ′, t1(ξ ′)) for that to happen. We will develop this theme in a future
publication, in connection with (2) and (4)–(6).

(3) We have shown that Ea([0, 2π ]) is dense in L2([0, 2π ]). Therefore, any η1 ∈ L2 is the
limit of a sequence of functions in Ea([0, 2π ]). In addition, it is well established that
L2([0, 2π ]) is dense in Hs([0, 2π ]) for s < 0, and contains Hs([0, 2π ]) for s � 0. It is
then an easy corollary that any function η1 ∈ L2([0, 2π ]) may be approximated arbitrarily
closely by a function in Ea,s([0, 2π ]). It follows from our proof that if η1 is continuous,
then η1 may be approximated uniformly by functions in Ea([0, 2π ]) and Ea,s([0, 2π ]).

5. EDEM for the Laplace operator on an annular domain

We now present a numerical implementation of the proposed EDEM based on one means of
inverting the operator N introduced above. The method we have implemented is not unique, but
is straightforward and reliable. Coincidentally, its basis is the same as the numerical technique
implemented in some of the Trefftz papers (see for example Liu [30]). For simplicity, we focus
on the Dirichlet problem in R

2 for the Laplace operator and consider a boundary value problem
involving a circular outer boundary (�2 : r = t2 (θ) = b) and a square inner boundary, �1.
We shall restrict our numerical study to the case where the boundary data, η1 and η2, are
continuous.

The square inner boundary is chosen to demonstrate that the EDEM gives good results
even with complicated domains involving boundary corners. It is interesting to note that this
combination of boundary shape and boundary data invalidates the definition of K since the
function η1 on the square boundary is not in any Ea([0, 2π ]). Remarkably, despite this fact
the EDEM can still be used to find a solution to this problem.

In a subsequent paper [37], we further illustrate the implementation of the EDEM using
the Helmholtz operator, and compare the results with those obtained using standard BEM (for
reasons of space, these comparisons have not been included here). The high accuracy and
superior speed of the EDEM make it an excellent candidate as an alternative to the BEM.

13
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5.1. Implementation of the EDEM for the Laplace equation

We consider a Dirichlet problem for the Laplace equation defined in the region � ⊂ R
2. Both

the outer circular boundary �2 and the inner square boundary �1 are centered at (0, 0). The
outer boundary has a prescribed value of η2 = 0, while the inner boundary value is defined by
the given function η1.

Let problem B be defined on the extended domain � ⊃ � bounded outside by the circular
boundary �2 of radius b and bounded inside by a circular boundary �0 of radius a, with the
boundary value η0:

problem B

⎧⎨
⎩

�u = 0, x ∈ �,

u|�0 = η0,

u|�2 = 0.

(30)

The most general solution to problem B satisfying homogeneous Dirichlet conditions on
�2 can be obtained by the separation of variables technique. The solution takes the form

u(r, θ) = a0 log(r/b) +
∞∑

m=1

(r−m − rm/b2m)(Am cos(mθ) + Bm sin(mθ)), (31)

with coefficients
{
a0, {Am,Bm}∞m=1

}
determined upon application of the boundary condition

at �0, as suggested by equation (17).
Inverting the operator N can be affected by first truncating the above expansion to a finite

sum approximation

u(r, θ) = a0 log(r/b) +
M∑

m=1

(r−m − rm/b2m)(Am cos(mθ) + Bm sin(mθ)) (32)

and then by considering a finite number, 2M + 1, of points on the inner boundary, �0. Let
us denote these by {yj = (θj , a)}2M+1

j=1 . By assumption, this identifies 2M + 1 unique points,
{xj = (θj , t1(θj ))}2M+1

j=1 , on the original boundary �1 corresponding to those points chosen on
�0.

Imposing the boundary condition u|�1 = η1 on (32) at those 2M + 1 points generates
2M + 1 equations in terms of the unknown coefficients

{
a0, {Am,Bm}Mm=1

}
, which can be

written as the matrix equation Az = B, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log

(
t1(θ1)

b

)
α11 · · · αM1 β11 · · · βM1

log

(
t1(θ2)

b

)
α12 · · · αM2 β12 · · · βM2

...
...

. . .
...

...
. . .

...

log

(
t1(θ2M+1)

b

)
α12M+1 · · · αM2M+1 β12M+1 · · · βM2M+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

with

αij = fi(t1(θj )) cos(iθj ), βij = fi(t1(θj )) sin(iθj ),

14
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and fi(t1(θj )) = t−i
1 (θj ) − t i1(θj )/b

2i for i = 1, . . . , M , and where

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

A1

...

AM

B1

...

BM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎣

η1(t1(θ1), θ1)

η1(t1(θ2), θ2)

...

η1(t1(θ2M+1), θ2M+1)

⎤
⎥⎥⎥⎦ . (34)

The set of unknown coefficients are found by solving this system for the vector z by, say,
Gaussian elimination. The solution within the domain � is then given by direct application
of equation (32).

We note in passing that the above means of inverting N is not unique. Other approaches
will be discussed in a follow-up paper.

5.2. Results

The square is centered on the origin with the side length 2 and boundary value η1 = 50. The
outer boundary is a circle of radius r = 3, centered on the origin with the boundary value
η2 = 0.

To simplify the calculations, we have exploited the symmetry of the problem. We focus
on the sub-domain between angles 5π/4 and 7π/4 and apply a zero flux condition across the
radial lines defining the extremes of this sub-region. The required derivative, ∂v/∂θ , derived
directly from equation (32), will introduce a set of additional equations that can easily be
incorporated into the matrix equation.

The problem is solved using the EDEM with 81 inner boundary points and 10 points
along each radial line. The results of evaluating equation (32) are shown in figure 2.

Qualitatively, the sequence of curves in figure 2 is consistent with the behavior expected
of a solution to Laplace’s equation, with the level curves becoming closer together as the inner
boundary is approached, indicating a higher rate of change closer to that boundary. Moreover,
the inner-most contours take on the shape of the square inner boundary and overall, the results
are symmetric (within the subdomain 5π/4 and 7π/4).

Comparison of this solution with one obtained using the BEM, shows that solutions
possessing higher accuracy and greater symmetry are obtained with greater speed and by
using fewer boundary points with the EDEM than using the BEM.

6. Summary remarks

The necessity of providing efficient algorithms for the solution of linear partial differential
equations for systems involving complicated boundaries is without dispute. Apart from full
numerical approaches, analytical methods of solution are often restricted to domains that
have little or no departure from simple geometries. By extending a complicated annular-like
domain to one which has simple boundaries, we can use the classic eigenfunction solution
approach as a means of producing a solution that can be written in a well-recognized form.
By restricting this solution to the original domain, we can obtain the solution to the original
problem. This idea and the resulting solution algorithm has been referred to here as the
extended-domain–eigenfunction method (EDEM). The Trefftz method is the methodology
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Figure 2. Contour (iso-potential) plots of the EDEM solution to the Dirichlet problem with a
square inner boundary. Contours are evaluated in increments of 5 units, with inner contour at
v = 50 and outer contour at v = 0.

that lies closest to ours. However, our theoretical introduction to the EDEM is a general
argument and encompasses more than any one numerical implementation.

In a separate report [37], we illustrate the accuracy and efficiency of the EDEM in
comparison with the well-known boundary element method (BEM). We have found that the
numerical implementation of EDEM is able to produce accurate estimates of solutions to
elliptic boundary value problems, consistent with those found with BEM, but does so much
more rapidly.

In future work, we will extend the development and analysis of this theory on several
fronts. We aim to provide a rigorous discussion for more general elliptic differential operators
on the theoretical questions surrounding the EDEM. This includes the existence and uniqueness
of operators K and N and conditions for which the known boundary data η1 on �1 and �1 itself
must satisfy to ensure that new data η0 on the new boundary �0 can be found. A numerical
analysis of the method, including an investigation of the ill-posed nature of solving equation
(19) for η0, will be presented. We will also investigate the possibility of using the EDEM to
solve problems involving nonlinear operators (e.g. the nonlinear Poisson–Boltzmann operator
[38]). An elliptic system of equations for a vector function appropriate for the Stokes problem,
equations (4)–(6), on axisymmetrical and asymmetrical domains will also be examined.
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Appendix

Proof of Lemma 1. Let us write z = x + iy, with x, y real. The function log |z| is the real
part of the (multi-valued) complex function log z = log |z| + i arg z. We define a (possibly
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multi-valued) harmonic conjugate to w, as follows. Fix z0 ∈ �λ, and for each z ∈ �λ, let
C ⊂ �λ be a smooth curve starting at z0 and ending at z. We define

w̃(z) =
∫

C

−wy dx + wx dy.

Note that by taking C to be the constant curve, we get w̃(z0) = 0.
It is easy to see that w and w̃ satisfy the Cauchy–Riemann equations. The definition of w̃

may depend on the chosen C, but only up to a point: if C1 is another curve starting at z0 and
ending at z, and if C − C1 contracts to a point in �λ, then they define the same value for w̃,
as can be readily seen by using Green’s theorem.

Suppose now that C starts at z0, ends at z0, and winds once counterclockwise around the
origin. Denote by k = w̃(z0) the value obtained by adopting this curve C. Since C does not
contract to a point, we may have k �= 0. Now note that the harmonic function arg z increases
its value by 2π when we go once around the origin along C. Therefore we choose α = k

2π
,

and define

H(z) = [w(z) − α log |z|] + i[w̃(z) − α arg(z)].

It is clear that the real and imaginary parts of H are each continuous, not multi-valued, and
satisfy the Cauchy–Riemann equations. �
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